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Abstract

The hadronic cascade description developed in an earlier paper is extended to
the response of an idealized fine-sampling hadron calorimeter. Calorimeter response
is largely determined by the transfer of energy Ee from the hadronic to the elec-
tromagnetic sector via π0 production. Fluctuations in this quantity produce the
“constant term” in hadron calorimeter resolution. The increase of its fractional
mean, f0

em = 〈Ee〉 /E, with increasing incident energy E causes the energy de-
pendence of the π/e ratio in a noncompensating calorimeter. The mean hadronic
energy fraction, f0

h = 1 − f0
em, was shown to scale very nearly as a power law in

E: f0
h = (E/E0)m−1, where E0 ≈ 1 GeV for pions, and m ≈ 0.83. It follows that

π/e = 1−(1−h/e)(E/E0)m−1, where electromagnetic and hadronic energy deposits
are detected with efficiencies e and h, respectively. Fluctuations in these quantities,
along with sampling fluctuations, are incorporated to give an overall understanding
of resolution, which is different from the usual treatments in interesting ways. The
conceptual framework is also extended to the response to jets and the difference
between π and p response.

1 Introduction

In Paper I[1] we developed a conceptual basis for understanding the divi-
sion between hadronic and electromagnetic energy deposition in a contained
hadronic cascade. 1 The model “calorimeter” was a very large lead or iron
cylinder, with no energy leakage except via muons, neutrinos, and front-surface
albedo losses. Extensive Monte Carlo simulations gave results in good agree-
ment with test-beam measurements. The relevant conclusions of the paper
were that:

1 Most of the content of Paper I was first presented at the 1989 Workshop on
Calorimetry for the Superconducting Super Collider[2].
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Fig. 1. Energy flow in a hadronic cascade. A fraction fem (with energy-dependent
mean f0

em) is transferred to the electromagnetic sector through π0 production in
repeated hadronic inelastic collisions. The em and hadronic energy deposits after
the division are separately stochastic, and so must be treated as parallel processes.
Each produces a visible signal, whose sum Evis is observed. EFlow simple

(1) All significant hadronic energy deposition is by low-energy particles (<∼1 GeV),
whose energy and species distribution in a given medium is independent
of the energy or species of the incident hadron. (Hadronic energy is de-
fined as all energy not carried away by π0 decay photons. 2 ) The existence
of this “universal low-energy hadron spectrum” makes it possible to de-
fine an energy-independent efficiency h for the conversion of this energy
into a visible signal in a fine-sampling calorimeter.

(2) In each high-energy collision of the hadronic cascade, a significant fraction
(typically 1/4) of the energy is transferred to the electromagnetic (em)
sector via π0 production. A sequence of high-energy hadronic collisions
bleeds off a larger and larger fraction of the energy as the incident energy
E increases. The net fraction transferred to the em sector is fem, and the
mean em fraction is f 0

em. This one-way flow is illustrated in Fig. 1. 3

(3) In particular, the mean fraction of the energy fh = 1−fem in the hadronic
sector scales very nearly as a power of the incident energy,

f 0
h(E) ≡ 〈fh(E)〉 = (E/E0)

m−1 , (1)

where m ≈ 0.83 (with some mild absorber Z dependence) and E0 ≈
1 GeV for pions and ≈ 2.6 GeV for protons. Physically, m is related to
the mean number of secondaries and the mean energy fraction going into
π0’s in any given collision in the cascade, and E0 is the energy at which
multiple pion production becomes significant.

(4) It was predicted that a calorimeter would have a different response to a
proton than to an electron.

2 Assigning nuclear gamma ray energy to the hadronic sector is an awkward but
necessary feature of the model, since its contribution scales with the hadronic frac-
tion. This point is discussed further in Sec. 6.
3 Wigmans observes that the actual number of π0’s produced is quite small[3].
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The observations pertain equally well to a homogeneous or fine-sampling
calorimeter, and have significant implications for its response and resolution.
“Fine-sampling” means that absorber and sensor elements are thin compared
to both the em radiation length and the neutron interaction length. It has the
same structure throughout: no separate em compartment or rear catcher. It
can be an inorganic crystal calorimeter, a uranium/liquid argon calorimeter,
or a lead/scintillator-fiber calorimeter.

The power-law approximation given in Eq. (1) is just that, for reasons dis-
cussed in Paper I . It seems to work well over the energy range of available
test-beam data, about 10 GeV to 375 GeV, and it has the required asymptotic
properties: It is everywhere positive, and f 0

h → 0 (π/e → 1) as E →∞ . The
physical assumptions it is based upon become less dependable at very high
energies and are not valid at energies below the threshold for multiple pion
production.

As far as possible, results in this paper are obtained without recourse the
the powerlaw approximation for f 0

h , to obtain more general results than those
relying on this more approximate form.

Most of the results reported in this paper were first reported at a variety of
calorimetry conferences and appear in the various Proceedings [2,4–9]. The
Monte Carlo results used in these papers are often based on now-superseded
versions of hadronic cascade simulation codes[10], the oldest being FLUKA86.
In particular, nuclear gamma rays were not included, so that the em deposit is
exclusively via π0 production. Since these versions many improvements in the
codes have been made, e.g., improvements in FLUKA by Ferrari and Sala[11],
especially in the nuclear physics modeling. The failings of the old code are
apparent in Fig. 2(b), for example, where the points fall below the 45◦ line
because of unscored hadronic energy. A large fraction of the unscored energy
is evidently that of nuclear gamma rays. On the other hand, electromagnetic
energy deposition was very well described[12] and can be trusted. In Paper I
we reported simulations with MARS10, HETC, and FLUKA, which, though
based on different high-energy interaction models, were in excellent agreement.
Since in this paper I depend only upon the high-energy division between the
em and hadronic sectors, calculations based on the older code have not been
repeated.

Recent developments are incorporated, some of which were predicted or dis-
cussed in Paper I. These include Cherenkov readout[13], which is for the most
part sensitive only to the em energy deposition, and observation of the π/p
response difference[14].

Central to the paper is the discussion of resolution, where conditional proba-
bility distributions (p.d.f.’s) are combined to account for parallel, independent
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Fig. 2. Calculated energy deposit distributions for 30 GeV negative pions incident
on a lead “calorimeter.” In case (a) backscattered energy is lost; in (b) it is retained.
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stochastic processes.

Hadron calorimetry is a well-traveled road, explored in hundreds, if not thou-
sands, of papers over several decades. The object here is to present a broad-
brush treatment of hadronic cascades in a simplified generic calorimeter, in
hopes that a somewhat nonstandard approach can contribute to our physical
understanding of a real calorimeter. Real calorimeters, with front em compart-
ments, rear catchers, leakage, crack corrections, jet finding algorithms, and a
myriad of other problems, are described in dozens of test-beam study results,
as well as in published studies of compensation, the role of neutrons, and other
matters. These are discussed in detail in Wigmans’ book[3] and review[15] ,
the review by Leroy and Rancoita[16], and in their many citations. None of
these practical problems are discussed here.

2 Albedo and fem

The em fraction fem = Ee/E increases with energy, but at any given energy
it is subject to large fluctuations. FLUKA simulations of the em/hadronic
energy division are shown in Fig. 2. The model absorber consisted of a large
lead cylinder (50 cm radius, 250 cm long) in which the first 25 cm (about 1.5
interaction lengths) was treated as a separate region. In Fig 2(a) no distinction
is made between the regions, while in 2(b) interaction of the incident pion was
not permitted in the front section, but energy deposited there is included. It
acted as a catcher for back-scattered interaction debris. The distribution about
the ideal Eh = 1−Eem shows less scatter in 2(b) because front-face, or albedo,
losses are included. Most albedo loss comes from backward or backscattered
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Fig. 3. FLUKA simulations for negative pions incident on a lead “calorimeter.” (a)
Distribution of the fractional mean em (≡ π0) energy deposit for 20 and 200 GeV
incident pions, and (b) energy dependence of the mean and standard deviation.
f0 distr

products of the first collision; when the first interaction occurs deep in the
detector there is essentially no albedo loss. Runs at 50 GeV with and without
an “albedo catcher” show an average difference in deposited energy is 0.43
GeV, or 0.8%. Out of 1000 cascades 50% lost less than 0.2 GeV, and 3.4% lost
more than 2 GeV. In the simulations the amount of lost albedo energy rises
only slowly with increasing incident energy, as might be expected. While these
losses are not totally negligible, I omit them from resolution consideration in
Sec, 7 because (a) the distribution is sharply peaked at near-zero loss, and (b)
the losses are small, particularly at higher energies.

For reasons discussed in the introduction, the points shown in Fig. 2 scatter
below the 45◦ line because older versions of FLUKA did not account for all of

5



the hadronic energy deposit, even in the absence of albedo losses. Presumably
most of this downward scatter (about 15% in the worst case) is the result of
the program’s failure to tally nuclear gamma rays, mostly the result of slow
neutron capture by nuclei. According to Ferrari and Sala[18], these might
account for nearly 10% (Fe) or 20% (Pb) of the π0 + γ fraction, or 5%–10% of
the total energy deposit. This energy fraction is not counted as part of what I
call visible em deposit, since the it scales with the hadronic fraction, not the
π0 fraction. Given that the hadronic fraction is underestimated, it is better to
take the hadronic fraction as

fh ≡ 1− fem, or Eh ≡ E − Eem . (2)

As the number of Monte Carlo events in the sample increases, the (Eh, Ee)
distribution projected onto the Ee axis approaches the marginal distribution
Π(Ee), the p.d.f for the em energy. Two FLUKA-generated (unnormalized) ex-
amples of Ee/E distributions are shown in Fig. 3(a). The mean and standard
deviations are shown in Fig. 3(b). The fractional mean 〈Ee/E〉 moves to the
right with increasing energy, and can be represented by f 0

em = 1− (E/E0)
m−1.

The rms width of Ee/E distribution, σnc, is remarkably constant, with only
a 40% decrease over two orders of magnitude in energy. This likely occurs
because of the slow logarithmic growth of multiplicity. The dimensionless “co-
efficient of skewness,” γ1 = µ3/(σ

3
ncE

3) (where µ3 is the third moment about
the mean), is constant to within the Monte Carlo statistics with a value near
0.6. There are no significant higher moments within the sensitivity of the
simulations.

It is to be expected that different or better cascade simulations would result
in a somewhat different shape and different moments. What is of consequence
here is that a function Π(Eem) exists which describes the energy distribution
of the π0’s for a given primary energy E; no significant conclusions depend
upon the details.

It is possible to understand the contribution of Π(Eem) to the calorimeter res-
olution by a geometrical construction. Figure 4 shows the same MC “events”
as Fig. 2(b), but with the lost hadronic energy restored as per Eq. (2) (except
for some vertical scatter retained for clarity). The observed energy distribution
in the absence of sampling fluctuations is the projection of this distribution
onto a diagonal line at θ = tan−1(h/e). The projection of the limiting cases
(fem = 0 and fem = 1) are shown by the arrows. All of the events thus project
onto the solid part of the line, with length | cos θ− sin θ| = (1−h/e) cos θ. The
sampled Π(Eem) distribution in Fig. 3(b) is replotted as the gray histogram
along the Eem/E axis. A point at Eem/E = 1 projects to the end of the solid
segment, so the energy scale along this axis is foreshortened by cos θ. The
solid line segment, rescaled by 1/ cos θ, is (1− h/e) long. The nearly-constant
fractional standard deviation of Π(Eem/E), σnc, also scales as (1 − h/e). It
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thus contributes (1− h/e)σnc (in quadrature) to the calorimeter resolution.

3 π/e

An electromagnetic shower initiated by an electron or π0-decay photons pro-
duces a visible signal (potentially observable via ionization or Cherenkov light)
in a calorimeter with efficiency e. Most of the ionization is by electrons and
positrons with energies below the critical energy, of order 10 MeV (21.8 MeV
for iron, 7.0 MeV for uranium). The response, here temporarily called “e,” is
usually linear in the incident energy E, and so serves to calibrate the energy
scale:

“e” = eE (3)

As shown in Paper I, the visible signal produced by hadron interactions also
comes predominately from low-energy ionizing particles whose spectra and rel-
ative abundance are independent of the incident hadron energy. Many mecha-
nisms are at play, including endothermic nuclear spallation. Neutrons play an
especially significant role[17]. These mechanisms are exhaustively treated in
the literature; for example, in Refs. [3,15,16,18]. The sum of all the hadronic
energy deposit mechanisms (excluding showers by π0 decay photons) produces
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an observable signal with efficiency h. In most cases h/e ≤ 1. 4 For a mean
hadronic fraction f 0

h = 1− f 0
em,

“π” = e f0
emE + h f 0

hE

= eE[1− (1− h/e)f 0
h ] . (4)

In the case of an an incident pion, the response relative to an electron is

π/e = 1− (1− h/e)f 0
h . (5)

Specializing to our powerlaw form for f 0
h ,

π/e = 1− (1− h/e)(E/E0)
m−1 ≡ 1− aEm−1 , (6)

where, as above, m ≈ 0.82 to 0.86. (π/e is only defined for an ensemble
of events, so it is implicitly a mean value.) Since the physics leading to the
powerlaw involves a multistep cascade, it is not expected to be dependable
below 5–10 GeV. Only a = (1− h/e)E1−m

0 can be obtained from fits to data,
at least in a single-readout calorimeter. The exponent m should be fitted as
well, but it is not as well-determined. For incident pions (not protons) a range
of E0’s near 1 GeV fit equally well because it is raised to a small power.
The ratio h/e cannot be obtained from a measurement of π/e as a function of
energy without other information or some assumption about E0.

I emphasize that my powerlaw representation is not empirical, but follows from
an induction argument. It has the correct asymptotic limit, since fem → 1 as
E → ∞. For a 1019 eV proton-induced air shower, for example, fem ≈ 0.98,
in accord with the usual cosmic ray expectation and observation that nearly
all the energy deposit at very high energies is electromagnetic. 5 The expected
behavior of π/e is shown in Fig. 5.

Representative fits of test-beam results to Eq. (6) are shown in Fig. 6. Solid
curved are least-squares fits with both m and a allowed to vary, while m is
constrained to its nominal value for the fits shown as dashed lines. In the case
of the copper/quartz-fiber calorimeter, an additional fit (dotted line) is made
with a = 0.90, my a priori expectation for such a calorimeter.

Given fits wide range of experimental data which has been fitted to test the
powerlaw, one suspects that the disparate results (e.g. the high value of m
for the CDF end-plug calorimeter) indicate data reduction problems. The low

4 A remarkable exception is provided by the WA 78 calorimeter[19].
5 This is an illustrative example only, because there is no expectation that m will
remain even relatively constant over such a large energy range.
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value of a (high value of h/e) for the copper/quartz-fiber calorimeter is not
understood in the context of the present analysis. Since the threshold energy
for electrons in silica is close to 1 MeV, it is hard to imagine that electrons
Compton-scattered by nuclear gamma rays contribute much.
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Table 1
Powerlaw fits to a variety of π/e measurements. The ZEUS uranium/scintillator[22]
and D0 uranium/argon[23] calorimeters are so close to compensating as to be un-
interesting in this context.

Calorimeter m a χ2 h/e* Expected h/e

SPACAL[20] 0.788 0.164 9.2 0.836 0.853–0.895†

(lead/scint-fiber) 0.830 ‡ 0.141 14.0 0.859 0.853–0.895†

CDF end-plug had cal[21] 0.865 0.244 2.7 0.756 0.667†

(50 mm Fe/3 mm scint) 0.816 ‡ 0.286 14.1 0.714 0.667†

Copper/quartz-fiber[13] 0.833 0.753 2.6 0.247 0.05 to 0.15§

(QFCAL) 0.816 ‡ 0.814 3.8 0.186 0.05 to 0.15§

0.794 0.900 ¶ 8.9 0.100 ¶ 0.05 to 0.15§

*Assuming E0 = 1 GeV.

† Paper I, Table 1. (The calorimeters have only approximately the same structure.)

‡ Dashed curves in Fig. 6: m held fixed at the value given by the fitted line in
Paper I, Fig. 12. Error in m from this work is ±0.01 to ±0.015.
§ Perhaps 5% of the total energy (≈ 10% of the hadronic energy) is deposited via
ionization by Compton-scattered electrons from several-MeV nuclear gamma rays,
mostly in the Cu absorber. Some of them produce Cherenkov radiation over part
of their range in the quartz fibers. A small fraction (∼ 3%?) of the hadronic energy
is deposited via ionization by high-energy pions, which can also produce Cherenkov
light. It is difficult to imagine how h/e can be as great as 0.10, but fits to the data
yield 0.20–0.25.
¶ Dotted curve in Fig. 6: a is held fixed near my expected value for Cherenkov readout.

4 π/p

In Paper I we observed that f 0
em ≡ 〈fem(E)〉 is larger for an incident charged

pion than for an incident proton (or neutron). This is a consequence of the fact
that a leading hadron, carrying a large fraction of the energy, is likely to have
the same quark number as the incident hadron. If the collision is instigated
by a π±, there is high probability that the leading hadron is a π0, but for an
incident proton or neutron the leading hadron is most likely a baryon. The
mean em fraction f 0

em is thus larger for an incident pion than for an incident
baryon.

We also observed that for a given material or fine-sampling calorimeter, there
is an energy-independent spectrum of hadrons below the incident hadron’s
energy, and that most energy deposit is by very low-energy particles. This
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means that the hadronic response (within a scale factor) of the calorimeter is
the same for protons as for pions; h/e is unchanged. The various simulations in
that paper found E0π ≈ 1 GeV, with some change from material to material.
For protons the Monte Carlo simulations yielded Ep0 ≈ 2.6 GeV. This is
consistent with the original expectation that E0 was the approximate multiple-
pion threshold[2]. The Z-dependent exponent m for a given material was the
same, within statistics, for both p and π−.

If the exponent m in the powerlaw were less for protons than for pions, then
at some energy the sign of the response difference would change, which can
be ruled out on physical grounds. Simulations are consistent with equality,
which implies that the ratio of the mean hadronic fractions, f 0

π(E)/f0
p (E),

is independent of energy. In the powerlaw approximation the scale energy is
different for the two cases: f 0

p /f0
π = (E0p/E0π)1−m. The simulations shown

in Paper I, Fig. 11 suggest f 0
π/f0

p ≈ (2.6/1.0)1−m = 0.83 for m = 0.815 and
f 0

p /f0
π = 0.87 for m = 0.85.

Thus if h/e 6= 1, a calorimeter should give a different response for charged
pions than for protons. In the usual case, where h/e < 1, pions give the
larger response. The effect is illustrated in Fig. 7, where as an example we
use h/e = 0.67, obtained from CALOR simulations (Paper I, Table 1) for the
“iron” configuration of the SDC test-beam calorimeter[24]. It is regrettable
that there was not time to measure the effect there.

Since then, the CMS forward calorimeter group at CERN has measured the
π/p difference using a calorimeter consisting of quartz fibers embedded in
a copper matrix (QFCAL)[13,14]. In this calorimeter, Cherenkov light was
detected, most of it coming from em showers, so that h/e was very small, and
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Table 2
Calculation of f0

p /f0
π as a function of incident hadron energy (last column) using

Eq. (8) and data from Table 2 of Akchurin et al.[14].
〈
f0

p /f0
π

〉
= 0.859±0.004, with

χ2 = 13.2. Most of χ2 is contributed by the first and third points.

Energy Response[14] f0
p /f0

π

(GeV) p/e π/e

200 0.562± 0.013 0.647± 0.001 0.806± 0.024

250 0.580± 0.010 0.648± 0.001 0.838± 0.020

300 0.590± 0.006 0.658± 0.001 0.834± 0.012

325 0.592± 0.006 0.652± 0.001 0.853± 0.013

350 0.607+0.001
−0.004 0.659± 0.001 0.868± 0.007

375 0.611+0.001
−0.003 0.664± 0.001 0.864± 0.005

150 200 250 300 350 400
0.60

0.70

0.80

0.90

1.00

E (GeV)

f p
 / 

f π

Paper I: estimate

(0.83 ~ 0.87)

Fit of constant value to
Akchurin et al. data

(0.859 ± 0.004, χ2 = 13.2)

Fig. 8. f0
p /f0

π as calculated from the copper/quartz-fiber calorimeter data of
Ref. [14]. The gray band is the range expected from Paper I. wigmans pi p

the π–p response difference was maximal. π/e and p/e as a function of energy
are reported in Table 2 of Ref. [14] and copied to our Table 2.

Eqation (5) may be rewritten for the pion and proton cases:

p/e = 1− (1− h/e)f 0
p

π/e = 1− (1− h/e)f 0
π (7)

Rearrangement gives us the energy-independent ratio of the mean hadronic
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fractions: 6

f 0
p /f0

π =
1− p/e

1− π/e
(8)

The constant ratio, which does not depend upon a powerlaw or any other
model for f 0

h , is independent of the detection efficiency factors h and e, as it
must be, but the statistical sensitivity is maximal for small h/e. This ratio is
calculated in the right column of Table 2 for the Akchurin et al. data. These
data together with estimates of the Paper I and a least square fit to a constant
f 0

π/f0
p are shown in Fig. 8. There is some evidence of energy dependence, but

I am inclined not to take it seriously because (a) it does not make theoretical
sense, and (b) the authors made a difficult subtraction of π+ contamination
in their positive beam. The contamination was minimal at the highest energy,
as is reflected in the uncertainties. If the pion contamination correction were
overdone, we would obtain the observed low values at the lower energies. I am
probably safe in concluding that f 0

p /f0
π ≈ 0.86 for this calorimeter.

In the case of incident kaons, the leading hadron is probably a strange meson,
but sometimes a pion. It is unlikely to be a proton or neutron. The response
difference between incident pions and kaons should thus be small.

5 mips

As indicated above and in Fig. 1, e and h are the efficiencies with which electro-
magnetic and hadronic energy are converted to visible signal. It is conventional
to scale signal sizes, in ADC counts, to the mean response for minimum ion-
izing particles (mips), thus giving them something of an absolute meaning. In
practice the “average” signal from penetrating muons, corrected for radiative
losses, is assumed to be described by the Bethe-Bloch equation including the
density effect. It is then scaled to the value at minimum ionization, presumably
defining the mip.

But the mip is commonly used incorrectly.

In a simplification of the normal derivation of the Bethe-Bloch formula, 7 ion-
ization and excitation energy losses are calculated separately for (soft) distant
collisions (low energy transfer per interaction) and (hard) near collisions (high
energy transfer). The regions are distinguished by the approximations appro-
priate to each[26–28]. One hopes for an energy at which they meet; this can

6 This ratio was not calculated in Ref. [13] or [14].
7 Fano [26] introduces an intermediate energy transfer region.
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be something of a problem in high-Z materials. Each contributes a factor ln γ
to the behavior at high energies:

(1) As the particle becomes more relativistic, its electric field flattens and
becomes more extended. This extension is limited by polarization of the
material. This “density effect” asymptotically removes the ln γ factor
contributed by the distant-collision region. The “relativistic rise” is still
there, but with half the slope[29]. 8

(2) The kinematic maximum energy which can be transferred in one colli-
sion sets the upper limit for hard energy transfer. Its rise with energy
is responsible for the other ln γ factor. As the particle energy increases
there is more δ-ray production and the so-called “Landau tail” grows and
extends. The most probable energy loss, well below minimum ionization
in a region dominated by many soft collisions, shows little or no rela-
tivistic rise and approaches a “Fermi plateau.” This is strictly true and
more easily understood for the closely-related truncated mean energy loss
discussed below.

The δ rays are part of energy loss as described by the Bethe-Bloch equa-
tion, and must not be confused with muon radiative processes discussed
below.

The “Landau distribution”[30] is not especially useful. It obtains for a thin
detector assuming a (constant, mass-independent) Rutherford cross section—
i.e. neglecting atomic physics. The variance and higher moments are not finite,
and the first moment, the mean energy loss, is finite only because of a max-
imum single-collision energy transfer Tmax. Sixty years later, one can make
fewer approximations and take atomic structure into detailed account. Bich-
sel’s approach[31–34] is to find the energy-loss distribution in a film sufficiently
thin that a particle has at most one interaction in it. This distribution is then
successively convoluted with itself to obtain the energy deposit distribution in
a detector element with normal thickness. 9

Such a result, for one cell of an argon-filled TPC, is shown by the solid line in
Fig. 9. The dotted line is the corresponding Landau distribution. The useful
descriptors are the full-width at half-maximum (fwhm) and the most prob-
able deposit (∆p). For thicker detectors, (fwhm/∆p) is smaller, and ∆p is a
larger fraction of the mean (〈∆〉). The energy-loss distribution for a minimum-
ionizing particle in a 640-µm thick silicon detector, for example, has a most
probable loss that is about 70% of the mean. For the reasons mentioned above,
the mean loss increases with increasing particle energy, while the most prob-

8 Review of Particle Physics 2006, hereafter RPP06.
9 In everyday detectors, energy loss by escaping δ-rays or gain from entering δ-rays
is small (2% level), so that “energy loss” and “energy deposit” are used somewhat
interchangeably.
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1.2 cm of argon gas, adapted from Ref. [34], Fig. 13. The mean energy loss is
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Bichsel; dot-dashed line: F (∆) =
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0 f(∆′)d∆′; dashed line: Landau distribution

(not normalized). bichsel fig1

able loss does not change appreciably.

The mean of the energy-loss distribution is ill-defined and ultimately not very
useful for describing energy loss by single particles. (It probably finds its best
application in dosimetry, where only bulk deposit is of relevance.) The large
transfers that contribute to the tail are improbable, making the mean of the
experimental distribution subject to large fluctuations and sensitive to cuts
and background. This behavior can easily be seen by examining restricted
energy loss, i.e. the ionization/excitation Bethe-Bloch−dE/dx calculated with
the exclusion of kinetic energy transfer above Tcut < Tmax. As a separate
matter, the δ-ray spectrum dNδ/dxdT can be (a) integrated between Tcut and
Tmax to find the number of δ-rays produced per thickness interval x, and (b)
multiplied by δ-ray kinetic energy T and integrated over the same interval to
find the total energy in the δ-rays, which is identically the truncated tail of
the ionization energy loss rate.

Examples for polystyrene scintillator, calculated using RPP06 Eqs. 27.1, 27.2,
and 27.5, are shown in Table 3 for several values of Tcut at typical test beam
muon energies. While the ionization loss rate rises about 17% as the beam
energy rises from 10 GeV to 300 GeV, both the number of δ rays and the
restricted energy loss rate at a given Tcut (here 1, 2, and 5 times the minimum
ionization energy) are virtually constant.

Such is the skewness of the distribution that in only 4% of the events is the
energy deposit greater than minimum ionization for x = 1 g/cm2. For a more
typical 3-mm thick scintillator, with x = 0.32 g/cm2, only 1.3% of the events
involve energy deposit greater than minimum ionization. More than five time
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minimum ionization is deposited by only 0.26% of the muons, yet these carry
30% of the ionization/excitation energy deposit in the case of a 300 GeV muon.
(The reader may verify that the decrease in Nδ with Tcut is consistent with
the change in |dE/dx|T>Tcut in the interval.)

“Restricted energy loss” at best only provides a feel for what is happening. In
Bichel’s quantitative calculation for a TPC cell shown in Fig. 9, the integral
of the distribution is indicated by F (∆), where ∆ is the actual energy deposit
rather than the energy loss rate. Even at minimum ionization, only ≈ 93% of
the area is included for ∆ <∼ 3.6∆p. The first moment, or the mean energy,
converges to 〈∆〉 much more slowly with increasing cutoff energy; in this ex-
ample it has reached less than 50% of its actual value with a cutoff of 5 keV.
(See Fig. 18 of [34].)

In a sample of a few hundred events, the mean deduced from the data is thus
substantially affected by a few rare events with high-energy δ rays. It is very
sensitive to the high-energy cut made on the distribution. Most experimental
distributions have background which further complicates the determination.
A more robust procedure is to fit a limited region around the peak to get
an estimator of the most probable loss. As discussed above, this tends to
be at about 70% of the theoretical mean at βγ ≈ 3.5 for thicker detectors.
Figure 27.7 in RPP06 illustrates the situation. More detailed treatments are
given by Bichsel[31–34].

In view of the above discussion, it seems likely that the experimental “mean”
〈∆〉exp is substantially less than 〈∆〉, but in any case ∆p ≤ 〈∆〉exp < 〈∆〉. If a
paper reports a mip calibration via the purported “average” energy deposit,
one suspects that the number is low, perhaps as low as 0.7 mips.

The ionization/excitation energy fraction sampled by the active region is

fraction sampled =
S dE/dx|scint

S dE/dx|scint + A dE/dx|abs

(9)

where S is the active region thickness, dE/dx|scint is the energy loss rate in the
active region (scintillator or other), A is the absorber thickness, and dE/dx|abs

is the energy loss rate in the absorber. It is “fairly sampled.” This is not the
case for electron and muon radiative losses.

Relativistic muons lose energy radiatively by direct pair production, brems-
strahlung, and photonuclear interactions. In iron at 1 TeV, these loss rates are
in the ratios 0.58:0.39:0.03. The ratios are fairly insensitive to energy at ener-
gies where the radiation is important. The pair:bremsstrahlung ratio is about
the same from material to material, while the photonuclear fraction is larger in
smaller in materials with smaller atomic mass number. These contributions to
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Table 3
Muon ionization/excitation energy loss rate below and above scattered electron
kinetic energy Tcut, and the number of scattered electrons (δ rays) with energy
above Tcut in polystyrene scintillator. The ionization/excitation energy deposit has
a minimum at 1.937 g cm−2MeV−1 for muon energy 319 MeV. The number of δ rays
with T > Tcut is proportional to thickness; for the 3 mm thick tiles in the ATLAS
barrel calorimeter x = 0.32 g cm−2[35]. Since almost all radiative loss occurs in the
iron plates, the radiative part of the energy loss rate is given for Fe in the last row.
The units of energy loss are g cm−2MeV−1.

Incident muon energy 10 GeV 30 GeV 100 Ge 300 GeV

|dE/dx| (ionization only) 2.414 2.560 2.702 2.824

Tmax (GeV) 4.8 22.0 90.2 289.5

Tcut = |dE/dx|min :

|dE/dx|T<Tcut 1.827 1.829 1.829 1.829

|dE/dx|T>Tcut 0.587 0.731 0.873 0.995

Nδ with T > Tcut 0.040x 0.041x 0.041x 0.041x

Tcut = 2 |dE/dx|min :

|dE/dx|T<Tcut 1.884 1.886 1.886 1.886

|dE/dx|T>Tcut 0.530 0.674 0.816 0.938

Nδ with T > Tcut 0.020x 0.020x 0.020x 0.020x

Tcut = 5 |dE/dx|min :

|dE/dx|T<Tcut 1.960 1.962 1.962 1.962

|dE/dx|T>Tcut 0.454 0.598 0.740 0.862

Nδ with T > Tcut 0.008x 0.008x 0.008x 0.008x

Radiative part of
total |dE/dx| in Fe 0.033 0.133 0.570 1.981

dE/dx rise almost linearly with energy, becoming as important as ionization
losses at some “muon critical energy” Eµc: 1183 GeV in plastic scintillator,
347 GeV in iron and 141 GeV in lead. 10 The tables of Lohmann et al.[36] are
commonly used. More extensive tables with a somewhat improved treatment
of radiative losses are given by Groom et al.[28], and an extension to nearly
300 materials is available on the Particle Data Group web pages[37]. 11

10 Other charged particles experience radiative losses as well, but there is no easy
mass scaling of the loss rate. In a calorimeter incident pions lose energy by radiation
until they interact, but the higher dE/dx is of little consequence and in any case
the radiated energy is absorbed.
11 For the PDG tables, an improvement to the pair-production cross section at high
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In equilibrium the muons are accompanied by an entourage of photons and
electrons (cascade products from direct pair production and bremsstrahlung)
characteristic of radiative losses in the higher-Z absorber. These should be
detected with the same efficiency as electrons, although a few high-energy
pairs go through the active layers. The procedure for correcting the signal size
for the contaminant muon radiative losses is described in many papers, but
in particular detail by Åkesson et al. for the HELIOS uranium/scintillator
calorimeter[38]. They report e/mip = 0.70± 0.05. In correcting for the radia-
tive losses they assumed that the radiative losses were fairly sampled by the
scintillator.

The bremsstrahlung is sufficiently continuous as to not introduce significant
radiation fluctuations[39], but there are large fluctuations in the pair pro-
duction energy loss. Monte Carlo calculations by Lanyov[40] indicate that,
in absorbers up to typical calorimeter thickness, the most probable energy
loss increases only slightly. This is to be expected. Distributions observed in
HELIOS[38] and SPACAL[25] demonstrate the broadening, but show more
increase of the most probable loss than might be expected.

If the calibration muon beam has been momentum-selected and then travels
through air or vacuum to the calorimeter, it enters without its entourage
of pairs and bremsstrahlung photons and, until this builds up over several
radiation lengths, the signal distribution does not include the full radiation
component. If this is desired, there should be a lead brick in the beam.

All of this assumes muons of known energy. “Out of channel” muons, which
have gone through or around the test-beam optics, are certainly not depend-
able calibration particles, but are sometimes used[24]. Cosmic ray muons have
a characteristic energy of about 3 GeV, but the flux falls off as about cos2 θ,
where θ is the zenith angle[29]. They can provide a useful for calibration in
some situations.

6 e, h, and e/h

Given a credible muon calibration, the quantity e/mip can be measured in an
electron beam. In a sampling calorimeter, cascade electrons are predominately
produced and absorbed in the inactive higher-Z material, so the signal is
significantly smaller than might be expected from the active layer’s share of
dE/dx (e/mip ≈ 0.6 to 0.7[41]), but with the uncertainties associated with
most probable energy deposit vs average energy deposit. It can be “tuned”

energies was made which slightly changes the muon dE/dx at high energies in high-
Z materials.
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by changing the absorber/detector ratio, perhaps to achieve compensation
(h/e = 1). Other things being equal, the detection efficiency is smaller if the
absorber has a higher Z. The critical energy is lower, so characteristic shower
electrons are more likely to deposit their energy before leaving the absorber.
As a corollary, e/mip = 1 for a nonsegmented calorimeter (e.g. an inorganic
crystal), and since there is always missing hadronic energy such a calorimeter
is always noncompensating.

The hadron efficiency h is more problematical; one finds a = (1−h/e)E1−m
0 or

an equivalent by fitting the energy dependence of π/e, and assumptions must
always be made about the constant multiplier to find h/e and hence h/mip.
The multiplier E1−m

0 is close to 1 for incident pions, but it is about 20% higher
for protons.

h is considerably more difficult to model, but in general it is smaller than e
because of the wide variety of ways hadronic energy becomes invisible, e.g.
through nuclear binding energy losses and “late” energy deposition (outside
the electronics window). 12 It increases somewhat with Z, and can be enhanced
by neutron production in uranium. Calorimeters with more “Z-contrast” are
more compensating (e ≈ h) mostly because e is smaller, in spite of the em-
phasis in the literature on increasing h.

Can we measure h/mip directly? Only by observing hadronic cascades in a
calorimeter insensitive to π0-produced em cascades, or by observing cascades
produced by hadrons below the π0 threshold. In Paper I we speculated about
building a calorimeter sensitive only to hadrons (a neutron detector) or to
the em sector (a calorimeter sensitive only to Cherenkov radiation), but the
context of the discussion was verification of the power approximation for f 0

h

and determination of the power m.

In the spirit of only- (mostly-) em sensitivity in QFCAL, Demianov et al.[42]
made preliminary neutron measurements using Bonner spheres[43] adjacent
to the QFCAL quartz-fiber calorimeter[13]. The longitudinal and transverse
distributions were measured. The results were in fair to good agreement with
MARS’96[44] calculations, but not sufficiently detailed to obtain h/mip (or
n/mip). Preliminary proposals[45] (in connection with International Linear
Collider (ILC) detector R&D) are being made to measure the neutron flux by
a variety of methods; future test-beam results will be of great interest.

One might use hadrons with energies below the π0 threshold. The ZEUS col-
laboration made measurements with low-energy protons and charged pions
with a compensated U/scintillator calorimeter[46]. Interestingly, as the kinetic
energy of the beam was decreased from about 5 GeV to about 0.4 GeV, e/h de-
creased from its high-energy value (one) to the e/mip measured for electrons.

12 A particularly nice discussion is given by Ferrari and Sala[18].
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The lower-energy particles tended to lose much or all of their energy by ioniza-
tion, so that they became indistinguishable from electrons at sufficiently low
energies. The resolution also decreased from its hadronic value, approaching
the em resolution until at the lowest energies noise became dominant.

A more desirable (or complimentary) approach might be to use an incident
beam of low-energy neutrons. Since E0p ≈ 2.6 GeV, one might expect the
π0 threshold to be about T ≈ 1.6 GeV. As the energy is scanned downward,
a pure hadronic signal should emerge. The response would not be quite the
hadronic signal observed from a higher-energy cascade, but this difference can
probably be understood. At very least, measurements in a low-energy neutron
beam would be interesting. But the real problem is making the test beam.

7 Resolution

The arrows between boxes in Fig. 1 actually indicate the various probability
distribution functions (p.d.f.’s) describing fluctuations in each of the steps. A
more complete version, Fig. 10, defines these distributions, which are described
in more detail in Table A.1. In the simple model considered in this paper, five
p.d.f.’s appear.

The potentially detectable energy deposit, or visible energy, is labeled “vis.”
It usually means ionization, which sometimes sampled directly but more often
via scintillators, where the scintillation light is usually detected by photo-
multipliers. In rare cases Cherenkov light is sampled. The variance associated
with the visible energy distribution distribution at fixed Ee, dominated by
fluctuations in the total kinetic energy of neutrons, is the intrinsic variance.

The label “samp” refers to the additional fluctuations introduced in sampling
the visible energy by a readout transducer such as a photomultiplier.

The stochastic processes are defined as follows:

(1) In the cascade initiated by the incident hadron, energy Ee is transferred
to the em sector via π0 production and decay. Because of its different
energy dependence, em energy deposited by nuclear gamma rays is not
included in my definition of Ee. The p.d.f. Π(Ee) was introduced in Sec. 2
to describe its distribution.

(2) The em energy Ee is detectable with some average efficiency e via the
ionization produced mostly by low-energy (“terminal”) electrons and
positrons. The p.d.f. of the em visible energy deposit at fixed Ee is labeled
ge(E

vis
e |Ee).

(3) Quite independently, the hadronic component produces a visible signal
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Fig. 10. Energy flow in a calorimeter, with the statistical distributions contributing
to the experimental resolution indicated. EFlow all

via energy loss by charged secondaries. This signal, the result of a variety
of mechanisms, is produced with an overall average efficiency h. The vis-
ible contribution by nuclear gamma rays is included here. Again, most of
the ionization is by low-energy particles. The p.d.f. gh(E

vis
h |Ee) describes

the distribution at fixed Ee (Eh).
(4) Only the total deposit Evis = Evis

e +Evis
h , with p.d.f. Fvis(E

vis|Ee), can be
sampled. The width of this distribution is identified with the “intrinsic
resolution.” The product of this distribution with Π(Ee), integrated over
Ee, is the p.d.f. of the potentially detectable signal, Fvis(E

vis).
(5) Finally, the deposited energy is sampled by measuring the ionization, ei-

ther directly or by observing scintillation light (Cherenkov light) with
photomultipliers or photodiodes. This step is to an extent under the con-
trol of the experimenter, since it depends on scintillation efficiency, light
collection efficiency, and other design details. For fixed Evis one measures
a signal Esamp, chosen from a distribution Fsamp(E

samp|Evis), which is
then summed over the intermediate Evis to obtain the final distribution
of the signal, Esamp. Even this step is not a simple convolution, since the
variance of Fsamp(E

samp|Evis) is proportional to Evis, not E.

The intrinsic and sampling distributions were separated in a classic experi-
ment by Drews et al.[47], who used two compensating sandwich calorimeters
with scintillator readout with lead and uranium plates, respectively. Alternate
sets of scintillators were read out separately. Sampling variations in the two
sets were independent, while intrinsic fluctuations were correlated. These were
recovered by adding and subtracting variances.

Calculation of the combined distribution is tedious and not entirely obvious;
it is relegated to Appendix A. The result (repeating Eq. (A.21)) is

(
σsamp

E

)2

=
(π/e)σ2

samp0

E
+

[
f 0

emσ2
e0

E
+

f 0
hσ2

h0h/e

E

]
+ (1− h/e)2σ2

nc . (10)
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Fig. 11. Wigman’s (simulated) data[3] for the intrinsic resolution of a Pb/LAr
calorimeter scaled by 1/

√
E, fitted with the term in the square brackets of Eq. (10).

The fit parameter are given in the text. wigmans intrinsic

Here σ2
samp0, σ2

e0, and σ2
h0 scale the variances contributed by the sampling, em

deposit, and hadronic deposit, respectively. They have the units of energy.

The first term is the familiar sampling contribution, (C/
√

E)2, except that it is
multiplied by π/e. This is to be expected and required, since this contribution
to the variance is proportional to the sampled visible signal, with mean (π/e)E,
rather than to the incident energy E.

The two terms in the square brackets are the two pieces of the intrinsic vari-
ance. Even if h/e = 1, the intrinsic variance has some energy dependence,
since fem increases with energy and fh increases with energy.

Wigmans[3] has noted that σintr/
√

E for the simulated lead/LAr calorime-
ter described in his Table 3.4 decreases with energy, reflecting the gradually
increasing transfer of energy to the em sector. His calculated results for six
energies, given in his Table 4.3, are plotted in Fig. 11. The curve was obtained
by adjusting the intrinsic variance scales σ2

e0 and σ2
h0. The best-fit parameters

are σe0 = 5.1% and σh0 = 13.7%. The fit is remarkably good, and, as expected,
σh0 is considerably larger than σe0.

The last term is the expected “constant term,” nearly (but not quite) constant
because the fractional variance of Π(Ee), σ2

nc, is nearly energy independent,
as discussed in Sec. 2. Here I treat it as a constant. It has larger values in
calorimeters with higher-Z absorber.

The em part of the intrinsic variance increases in importance as E increases,
as does the sampling variance. Both curve downward if plotted vs 1/E, as
shown in Fig. 12. Since the hadronic intrinsic contribution decreases faster
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Fig. 12. Shapes of contributions to sampling and intrinsic variance. As 1/E → 0,
the slopes of the sampling and intrinsic em contributions approach finite constants,
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Fig. 13. “Conventional” and Eq. (10) fits to the QFCAL energy response data given
in Table 3 of Ref. [13]. The fit parameters are given in Table 4. groom res plot

than 1/E, it curves upward.

It is difficult to verify Eq. (10), even with robust experimental data. The
expected resolution should be a linear combination of the three curves shown
in Fig. 12 (plus a constant term), so any deviation of the variance from the
traditional C2

1/E will show up as a slight curvature. Moreover, the sampling
and em contributions have such similar energy dependence that a simultaneous
fit to σsamp0 and σe0 can be indeterminate.

The square of the fractional energy resolution in QFCAL for incident pions
(Akchurin et al.[13], Table 3) is plotted as a function of 1/E in Fig. 13. The
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Table 4
Parameters for the two fits shown in Fig. 13. The power-law parameters m = 0.833,
a = 0.753 and h/e = 0.247 (for E0 = 1.0) from Table 1 were used in the reduction.

σ/E = C1/
√

E ⊕ C2 Eq. (10) with σsamp0 = 0

Parameter Value Parameter Value

σe0 377%

C1 270% σh0 216%

C2 13.6% C 10.7%

C2/(1− h/e) 18.0% C/(1− h/e) 14.2%

χ2/dof 58.3/14 χ2/dof 22.7/13

data curve downward relative to the “conventional” linear fit, C2
1/E + C2

2 ,
shown by the dashed line. For QFCAL intrinsic fluctuations were more im-
portant than sampling fluctuations except at the lowest energies, although
sampling fluctuations were not negligible. Because of the near-degeneracy of
sampling and intrinsic em fluctuations, I set σsamp0 = 0 in making a fit, which
is shown by the solid curve in the Figure. It describes the data well, and the
physics responsible for the curvature is understood.

Parameters for both cases are shown in Table 4. The fittted values for σe0 and
σh0 are very much larger than for the example discussed above and shown in
Fig. 11; this follows from the excellent resolution of Wigman’s model calorime-
ter and the poor resolution of QFCAL.

Other examples testing the 1/E are difficult to find. Many test-beam results
are at low energy, many have large errors, and many of the earlier results are
presented as functions of C1/

√
E + C2 rather than C1/

√
E ⊕C2. It will be of

interest to test Eq. (10) against further experimental results.

8 Jets

How is calorimeter’s response to a jet different than its response to a single
pion? There are three situations to consider:

(1) An incident pion. The primary collision usually occurs about an inter-
action length into the calorimeter. There is a minimum of backscatter
(“albedo”). The fragmentation process is dependent on energy and the
nuclear environment.
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(2) A “test-beam jet,” in which trigger counters ensure that the primary
interaction occurs in a thin absorber in front of the calorimeter. This is
exactly the same as the incident pion case, except for increased albedo
because of the high probability that some of the first-collision debris
interacts near the front of the calorimeter.

(3) A primary fragmentation jet. The only evident differences from the above
cases are the (much) higher energies and a simpler environment; except
in heavy-ion collisions just two particles interact. This section concerns
whether the mix and distribution of photons, pions, and other particles
results in calorimeter response different than the response to a pion or
“test-beam jet.”

As elsewhere in this paper, the situation is highly idealized: The homogenous
or fine-sampling calorimeter is large enough to contain the entire cascade and
the structure is uniform throughout. The realities of jet-finding and isolation
algorithms, albedo, the effects of the magnetic field, passive material in front
of the calorimeter, etc., are all ignored.

The power law approximation for fh developed in Paper I will be used through-
out this section.

A jet with energy EJ consists of photons, mostly from π0 decay, and “stable”
hadrons. (Energy which might be carried away by leptons is ignored.) Since
most of the incident “stable” hadron flux consists of charged pions, E0 ≈
1 GeV and (1− h/e) ≈ a.

One needs only to sum the calorimeter response to all of these particles to
obtain the response to a jet. If Rej is the response to the jth π0 (γ) in the
jet (with energy Eπ0j) and Rhk the response to the kth stable hadron (with
energy Ehk), then the response to a jet is given by

Evis
J =

∑
photons

Rej +
Nhad∑
k=1

Rhk . (11)

Using Eqns. (3)–(6) to evaluate Rhk and Rej, this reduces to

Evis
J = eEJ

[
1− a Em−1

J

Nhad∑
k=1

(Ehk/EJ)m
]

. (12)

Alternatively, the spectrum of stable hadrons can be described by a fragmen-
tation function D(z), where z is the hadron’s momentum parallel to the jet
direction, scaled by the jet’s momentum. In the present study z is treated
as the fractional energy, i.e. z ≈ Ehad/EJ . When the arguments leading to
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Eqn. 12 are repeated, one obtains

Evis
J = eEJ

[
1− a Em−1

J

1∫
0

zmD(z)dz
]

, (13)

where D(z) describes the spectrum of all hadrons except for the π0’s.

The sum (Eqn. 12) or integral (Eqn. 13) thus appears as a correction factor
to the normal hadronic response of a calorimeter. If it is unity, the response
to a jet is the same as the response to a pion. In any case it is multiplied
by a, which is usually < 0.3. The distinction between a single pion and a jet
vanishes as the calorimeter becomes more compensated—except, of course, for
the albedo, magnetic field, passive material in front of the calorimeter, and
cone-cut effects mentioned above.

If the sum or integral is evaluated for m = 0, the mean stable hadron multi-
plicity 〈Nhad〉 is obtained. If m = 1, the result is the mean nonelectromagnetic
fraction of the jet’s energy 〈Fhad〉. The desired summation or integral, with
m ≈ 0.82–0.86, is in some sense an interpolation between the two.

In using either experimental or Monte Carlo distributions to evaluate the
sum or integral, special treatment of the very low-z region is necessary, as is
normalization to an appropriate 〈Fhad〉.

The integral in Eqn. 13 is evaluated for four representative cases:

Two experimental results, both with jet energies at or near MZ/2. Since the
measurements are for charged hadrons, the distributions must be renormalized
to include the contributions of such particles as Λ’s and KL’s.

(1) Jets from Z decay, as measured by the DELPHI collaboration at LEP[48].
The published fragmentation function is for the entire event, so the func-
tion has been normalized downward by a factor of two to describe the
individual jets. Data were read from their Fig. 3(b) and extrapolated to
z = 0.

(2) CDF charged fragmentation function at
√

s = 1800 GeV[49]. zdNch/dz
was extrapolated to z = 0 to force 〈Fch〉 = 0.65, their reported value.
(Since some of the energy is carried by neutrals, this value is probably
too high for consistency with isospin conservation.)

Two samples of TWOJET ISAJET[50] events at
√

s = 40 TeV. 13 In both
cases, all hadrons other than π0’s are used:

13 I am indebted to my SDC collaborator E. M. Wang for running these simulations.
This work was jointly reported in Refs. [6] and [7].
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Fig. 14. Distribution in z for ISAJET TWOJET events at
√

s = 40 TeV, for
1000 GeV < MJJ < 2000 GeV. dnhdz1000

(3) 3226 events with pt (hard scatter) > 40 GeV/c, and (100 GeV < MJJ <
200 GeV). The mean jet momentum is 73 GeV/c, and the mean non-π0

hadronic multiplicity is 26.
(4) 3042 events with pt (hard scatter) > 400 GeV/c, and 1000 GeV < MJJ <

2000 GeV. The mean jet momentum is 677 GeV/c, and the mean non-π0

hadronic multiplicity is 70. The z distribution for these events is shown
in Fig. fig:dnhdz1000.

The results are summarized in Table 5. There is ambiguity because of uncer-
tainty in 〈Fhad〉 in the simulations and 〈Fch〉 in the experimental results. If pion
production dominates, one might expect 〈Fhad〉 ≈ 2/3 from isospin consider-
ations. (In Paper I, we reported fractions closer to 3/4.) Some of the bias can
probably be removed by normalizing

∫
zD(z)dz to 2/3, as indicated by the ta-

ble entries in parentheses. As can be seen, the integral is slightly less than unity
for the similar low-energy LEP and Tevatron fragmentation functions, and it
is slightly greater than unity for simulated 40 TeV jets. Values lie between 0.84
and 1.15 before normalization, and 0.92 to 1.06 after normalization—probably
well within the uncertainty of the fragmentation functions in either the exper-
imental or Monte Carlo cases. The integrals also change by about 0.05 if m
is changed by 0.01, introducing an additional uncertainty which could be as
great as 20%. Given the various uncertainties, I conclude that the correction
factor for fragmentation jets at the highest-energy colliders should be between
0.85 and 1.15.

The compensation factor a ≈ (1−h/e) appearing in Eq. (12) and 13 serves to
further reduce the effect of the correction factor in producing a jet/π differ-
ence. The percentage errors for the two limiting cases 0.85 and 1.15 are plotted
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Table 5
Integrals over representative fragmentation functions. Numbers in parentheses are
calculated for the nonelectromagnetic energy fraction normalized to 0.67. In the
case of the DELPHI and CDF results, the unrenormalized energy fraction is for
charged hadrons only.

Source Process
∫ 1
0 D(z)dz

∫ 1
0 z0.86D(z)dz

∫ 1
0 zD(z)dz

DELPHI Z → jet jet 11.0(12.1) 0.84(0.92) 0.61(0.67)

CDF
√

s = 1.8 TeV 17.8?(19.9) 0.94(0.97) 0.65(0.67)

ISAJET 40 TeV, 〈pJ〉 = 73GeV/c 26.2(25.2) 1.04(1.00) 0.69(0.67)

ISAJET 40 TeV, 〈pJ〉 = 677GeV/c 69.8(64.7) 1.15(1.06) 0.72(0.67)

? The extrapolated low-momentum part of the function contributes 10 to this total.
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Fig. 15. Energy determination error as a function of jet energy for representative
values of h/e, for the two extreme case of the correction factor: 0.85 (top curves,
for hard, low-multiplicity jets) and 1.15 (bottom curves, for soft, high-multiplicity
jets). jeterror2

in Fig. 15 for calorimeters with h/e = 0.70 and h/e = 0.85, values which might
occur for a Pb/LAr or badly designed metal/scintillator calorimeter. The un-
certainty in the exponent m could introduce an error of about 3% for jets
below 100 GeV in a poor calorimeter.

In summary: In the context of a power law approximation to the hadronic
fraction for an incident pion, the response for an incident jet reduces to a
simple correction factor, an integral over the fragmentation function. Given
the uncertainties involved, no difference between jet and pion response can be
found.
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9 Beating the devil

An estimation of the em content of individual events would permit correction
for intrinsic fluctuations (reduction of the “constant term”), along with its
contribution to energy uncertainty.

Several attempts have been made to use the radial and longitudinal detail
to estimate, and correct for, the em cascades. During tests for the SDC con-
struction, it was proposed that the em contribution might come “early” in
the cascade, and could be estimated by excess energy deposit in the first lay-
ers. This turned out not to be true[51]. The ATLAS barrel calorimeter group
adjusts downward the contribution of readout cells with large signals, since
these tended to be from em cascades. In the test-beam runs they achieved
slight improvements, e.g. from (46.9 ± 1.2)%/

√
E to (45.2 ± 2.2)%/

√
E[35].

Ferrari and Sala have simulated such corrections for the LAr TPC ICARUS
detector, where very detailed 3D imaging is possible, and conclude that the
em content can be fairly well determined from the direct observation of the em
cascades[18]. The success of these corrections depends on the detail available,
and any gains are usually marginal.

It was long suggested by Mockett[52] that information from a dual-readout
calorimeter with different h/e’s in the two channels could be used to estimate
the electromagnetic fraction fem for each event. Winn[53] has proposed using
“orange” scintillator, observing the ionization contribution through an orange
filter and observing the Cherenkov contribution through a blue filter. This has
not yet been implemented, and looks problematical.

The idea of using a quartz fiber/scintillator fiber calorimeter to extract an
estimate of Ee for each event was discussed by Wigmans in 1997[54]. Since
then, the DREAM collaboration (Akchurin et al.[55]) has elegantly demon-
strated the efficacy of the dual-readout technique, using a copper/optical fiber
test-beam calorimeter. It consists of copper tubes, each containing three plas-
tic scintillator fibers and four undoped fibers which produce only Cherenkov
light. These are read out separately for each event.

The principle is illustrated in Fig. 16. Akchurin et al.’s notation is used: S
for the scintillator signal and Q for the Cherenkov signal, with both energy
scales calibrated with electrons. For this example their values h/e|S = 0.7
and h/e|Q = 0.2 are used for the scintillator and nominal Cherenkov readouts
respectively. For infinitely good resolution. events with different fem should lie
along the solid line drawn from fh = 1 to fh = 0 (fem = 0 to fem = 1):

S = E(fem + fh(h/e|S)) , and Q = E(fem + fh(h/e|Q)) . (14)
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Fig. 16. A toy model showing energy correction for 100 GeV pions in an idealized
DREAM calorimeter, where Q is the response in the quartz-fiber readout and S is
the response in the scintillator-fiber readout. The observed “events” are shown by
the +’s, and the corrected events by the ◦’s. Rotating to a frame in which the Q′

axis is parallel to the event locus provides an equivalent reduction. q vs sprime

The effects of finite resolution are illustrated using simulations which give
fem for 100 GeV negative pions axially incident on a very large lead cylin-
der. (Results at 30 GeV from the same study are shown in Fig. 3(a).) For
this cartoon example I arbitrarily introduced a Gaussian scatter in both Eem

(σem/
√

100 GeV = 1.5%) and Eh (σh/
√

100 GeV = 3.0%). The “events” are
shown by the small +’s in the figure. The solid histogram at the top shows
the marginal distribution in S. The mean is 84.7 GeV, the fractional standard
deviation is 5.3%, and there is the usual skewness toward high energies.

Energy correction is straightforward. With the definition

R =
1− h/e|Q
1− h/e|S

, (15)

Eq. (14) can be solved to obtain

Ecorr =
RS −Q

R− 1
. (16)
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The circles in Fig. 16 show the same events after reduction via Eq. (16), and
the dashed histogram shows the marginal distribution. The mean is 100.1 GeV,
the fractional standard deviation is 3.4%, and there is no evident skewness.
Complete compensation has been achieved by using the simultaneous readouts.

Alternatively, a coordinate rotation to axes (Q′, S ′) can be made, such that
the new Q′ axis is parallel to the event locus. The projection of the event
distribution onto the new S ′ axis is of minimal width. Scaled upward by the
geometrical factor, it becomes the corrected distribution given by Eq. (16).

The importance of a large “compensation asymmetry” is evident. If the stan-
dard deviation in Q is σQ and the standard deviation in S is σS (both in GeV),
then the uncertainty in Ecorr is approximately

σ2
Ecorr =

(
R

R− 1

)2

σ2
S +

(
1

R− 1

)2

σ2
Q (17)

Since R can be well determined either from test-beam measurements of π/e
as a function of energy or from fits to the slope in a plot of Q vs S at one
energy, the error in R has been neglected in writing Eq. (17). In the present
example R = (1 − 0.2)(1 − 0.7) = 2.66, so σ2

E = 3.20σ2
S + 0.36σ2

Q. Given the
Cherenkov readout, σ2

Q is likely to be much larger than σ2
S. The price of the

correction is an increased error on each event, but it is clear from Fig. 16 that
there is compensating improvement.

DREAM has demonstrated how to detect and remove the effects of fluctua-
tions, albeit with a doubling of the usual number of photomultipliers. Prelim-
inary designs for a full-scale detector are being developed in the context of
International Linear Collider (ILC) detector studies[45]. If neutron detection
can be added, then the in-principle 1% hadron calorimeter ultimate resolu-
tion[54] might be approached.

Alternate schemes simpler than DREAM would be desirable. Winn’s scheme[53],
taking advantage of the different colors of Cherenkov and (red) scintillation
light, uses common detectors but still needs the doubled number of photomul-
tipliers. Clean separation of the two signals would likely be difficult. LSND[56]
used a weak scintillator and distinguished between directional Cherenkov light
and isotropic scintillation light. But this was a very different kind of detector,
a homogenous low-Z detector used in a search for rare signals involving single,
low-energy electrons. The electrons at the end of a high-energy shower do not
remember the original direction.
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10 Discussion

The conceptual picture of the physics of a hadronic cascade and the scaling
law it implies have been rich in consequences for understanding the behavior
of a hadron calorimeter. The response ratio π/e is particularly simple, and the
pion-proton response difference, in retrospect so obvious, was an unexpected
surprise. If the incident hadron is a jet rather than a pion, the response is
still given by Eq. (4), except that fh is multiplied by an integral over the
fragmentation function which appears to be near unity. Resolution is described
by considering in detail the various stochastic processes involved in a hadronic
cascade. They cannot be simply convoluted.
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A Resolution

In the cascade initiated by a hadron with energy E, energy Ee is transferred to
the em sector via π0 production and decay. The energy deposit in the resulting
em cascades produce ionization with some efficiency e. Most of the ionization
is via energy loss by the abundant low-energy electrons. In the case of the
CMS Cu/quartz test calorimeter[13], Cherenkov light samples the electron
path length. Quite independently, the hadronic component produces ionization
through the many mechanisms involved in hadronic cascades, again mostly
by ionization by low-energy particles, with overall efficiency h. Each goes its
stochastic way independently of the other. One must calculate the distribution
of the sum of the contributions to the ionization with the constraint that
Ee is fixed, then integrate over Ee. Finally, the distribution is “sampled” by
directly collection ions or detecting scintillation light (or Cherenkov light) via
photomultipliers or phodiodes, The resulting probability distribution function
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(p.d.f.) has a variance somewhat different than the usual (σ/E) = σ′/
√

E ⊕
σconst. The differences, discussed in Sec. 7, are easily understood physically.

To expedite the calculations, it is useful to associate a characteristic function
〈eiux〉 = φ(u) (c.f.) with each p.d.f. f(x). It is essentially the Fourier transform
of the p.d.f., and is discussed in the Probability section of Ref. [?] and many
other places[57]. Among the properties I will use are:

• Convolution of p.d.f.’s becomes multiplication of c.f.’s:

f(x) =
∫

f1(x)f2(x− y)dy =⇒ φ(u) = φ1(u)φ2(u) (A.1)

• Let the conditional p.d.f. of f2(x|z) be φ2(u|z) and the p.d.f. of z be f1(z).
Then

φ(u) =
∫

f1(z)φ2(u|z)dz . (A.2)

• If φ2 (above) is of the form φ2(u|z) = A(u) exp(ig(u)z), then

φ(u) = A(u)φ1(g(u)) . (A.3)

where φ1(u) is the c.f. of f1(z).
• The c.f. of a Gaussian p.d.f. with mean m and variance σ2 is

φ(u) = exp (imu− σ2u2/2) . (A.4)

• Higher moments may be included by continuing the series:

φ(u) = exp (imu− σ2u2/2− iµ3u
3/3!) + . . . (A.5)

Here µ3 is the third moment of the distribution about the mean. The di-
mensionless “coefficient of skewness” γ1 = µ3/σ

3 was introduced in Sec. 2
and will be used here.

The arrows between boxes in Fig. (1) actually indicate the various probability
distribution functions (p.d.f.’s) describing fluctuations in each of the steps.
A more complete version, Fig. 10, defines these distributions, which, along
with their c.f.’s, means, and variances are given in Table A.1. The notation
is somewhat verbose in the interest of clarity. Throughout the calculations,
the primary hadron energy E is implicit and constant. It is also convenient to
somewhat interchangeably use fe = Ee/E, Eh = (E − Ee), and fh = Eh/E.

The p.d.f. Π(Ee) is discussed in Sec. 2. For reasons discussed there, Ec (or fem)
is chosen as the independent variable rather than its hadronic counterpart Eh

(or fh). Typical simulations are shown in Figs. 2 and 3. The mean of Ee/E was
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Table A.1
Probability distribution functions (p.d.f.’s) and characteristic functions (c.f.’s) used
in the resolution discussion. The primary energy E is an implicit conditional vari-
able, and the em energy Ee is the independent conditional variable used in the
development. The p.d.f. of the final sampled energy is not used explicitly.

Distribution p.d.f. c.f. Mean Variance

Energy of π0’s Π(Ee) φΠ(u) Ee E2σ2
nc

Ionization in em showers ge(Evis
e |Ee) φge(u|Ee) eEe eEeσ

2
e0

Ionization by hadrons gh(Evis
h |Ee) φgh(u|Ee) h(E − Ee) h(E − Ee)σ2

h0

Total ionization, fixed Ee Fvis(Evis|Ee) φvis(u|Ee) Eq. (A.13) Eq. (A.13)
Total ionization Fvis(Evis) φvis(u) Eq. (A.15) Eq. (A.15)
Sampled signal, fixed Evis Fsamp(Esamp|Evis) φsamp(u|Evis) Esamp − Evis eEvisσ2

samp0

Final sampled signal [Fsamp(Esamp)] φsamp(u) Eq. (A.20) Eq. (A.21)

defined as f 0
em, the fractional variance was found to be σ2

nc (“nearly constant”),
and its coefficient of skewness γ1 was found to be about 0.6. Its c.f. is thus

φΠ(u) = exp (iuf 0
emE − u2σ2

ncE
2/2− iu3γ1σ

3
ncE

3/3! + . . .) . (A.6)

The skewness is carried forward in the calculation. The other p.d.f.’s are as-
sumed to be near-Gaussian, with c.f.’s of the form given in Eq. (A.4).

The conditional p.d.f. ge(E
vis
e |Ee) describes the visible signal produced by

the deposit of Ee in the em sector. “Visible” means energy deposit, usually
ionization, which can be sampled by an appropriate transducer. Its mean value
is eEe,

14 and its c.f. is φge(u|Ee). The variance for an ensemble of events with
the same Ee should be proportional to Ee. The c.f. may be written as

φge(u|Ee) = exp(iueEe − u2σ2
e0eEe/2) . (A.7)

where σ2
e0 scales the variance. Since the variance has units of (energy)2 and is

proportional to the energy, σ2
e0 has the units of energy.

Similarly, the distribution of ionizing hadronic energy at fixed Ee is given by
gh(E

vis
h |Ee). The mean is h(E − Ee). (Since Eh = E − Ee, it is sufficient to

express the condition on Eh as a condition on Ee.) In analogy to Eq. (A.7), I
write the c.f. as

φgh(u|Ee) = exp(iuh(E − Ee)− u2σ2
h0h(E − Ee)/2) . (A.8)

The complicated hadronic response is dominated by a small number of colli-

14 The normalization of e and h is ignored because at the end only the ratio h/e
appears.
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sions with large nuclear binding energy losses, so its distribution is wider than
the em response[23,38,58]. It is thus expected that σ2

h0 > σ2
e0, but as shown

in Sec. 7 it is hard to distinguish the ways the contributions of σ2
e0 and the

sampling term modify the energy dependence of the resolution.

I interpret ge(E
vis
e |Ee) and gh(E

vis
h |Ee) as the em and hadronic contributions,

respectively, to the intrinsic resolution. This point will be explored later.

Only the total ionization (or Cherenkov light) Evis = Evis
e + Evis

h can be sam-
pled. Let the conditional p.d.f. of Evis be Fvis(E

vis|Ee):

Fvis(E
vis|Ee) =

∫
ge(E

vis
e |Ee) gh(E

vis − Evis
e |Ee)dEvis

e (A.9)

This integral is a simple convolution, so by Eq. (A.1)

φvis(u|Ee) = φge(u|Ee)φgh(u|Ee) . (A.10)

The sum over Ee results in the distribution

Fvis(E
vis) =

∫
Π(Ee) Fvis(E

vis|Ee)dEe . (A.11)

Via Eq. (A.2) the c.f. of Fvis is

φvis(u) =
∫

Π(Ee) φvis(u|Ee)dEe . (A.12)

The c.f. φvis(u|Ee) can be calculated using Eqs. (A.7) and (A.8). For simplicity
here and in the algebra leading to Eq. (A.15), it is convenient to define ∆σ2 =
σ2

h0h/e− σ2
e0. Terms involving Ee are collected into the second exponential:

φvis(u|Ee) = eiuhE−u2σ2
h0hE/2 × eieEe(u(1−h/e)−iu2∆σ2/2) (A.13)

Written in this way, φvis(u|Ee) is of the form A(u) exp(ig(u)z), so by Eq. (A.3),

φvis(u) = eiuhE−u2σ2
h0hE/2 × φΠ(ue(1− h/e)− iu2e∆σ2/2) , (A.14)

where g(u) is identified with e(u(1 − h/e) − iu2∆σ2/2). φΠ(u) is given by
Eq. (A.6), so it remains to substitute this function into Eq. (A.14) and collect
the terms multiplying powers of u. These terms can then be identified as
the mean, variance, and skewness of Fvis(E

vis). After considerable algebra,
Eq. (A.14) yields
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φvis(u) = exp
(
iueE(f 0

em + f 0
hh/e)

− 1
2
u2eE[femσ2

e0 + f 0
hσ2

h0h/e + (1− h/e)2σ2
nce

2E2]

− 1
3!
u3[γ1σ

3
nce

3E3(1− h/e)3 + 3σ2
nc∆σ2e2E2(1− h/e)

]
+ . . .

)
(A.15)

The final step is to “sample” the ionization with whatever output transducer
is being used. Although the experimenter has little control over the variance
of Fvis(E

vis). 15 the design might be changed to improve light collection, for
example, if the variance contribution due to photoelectron statistics were sig-
nificant. Again a Gaussian distribution is assumed. The variance contribution
from the sampling transducer is proportional to Evis:

Fsamp(E
samp|Evis) =

1√
2πσ2

samp0E
vis

exp

[
−(Esamp − Evis)2

2σ2
samp0E

vis

]
(A.16)

φsamp(u|Evis) = exp[iEvis(u + i
2
u2σ2

samp0)] (A.17)

φsamp(u) =
∫

Fvis(E
vis|Ee)φsamp(u|Evis)dEvis (A.18)

Since the variance is not a constant, a simple convolution is again insufficient.
Following the recipe of Eq. (A.3), g(u) = u + iu2σ2

samp0/2 is substituted for u
in Eq. (A.15):

φsamp(u) = φvis(u + iu2

2
σ2

samp0) (A.19)

The mean pion response (the multiplier of iu in Eq. (A.15) is unaffected:

“π” = eE(f 0
em + f 0

hh/e) ;

or π/e = 1− (1− h/e)f 0
h , (A.20)

so that the usual form for π/e (Eq. (4) is recovered.

However, eE(f 0
em+f 0

hh/e)σ2
samp0 is added to the variance of Fvis(E

vis) (the mul-
tiplier of −iu2/2 in Eq. (A.15)). The final fractional variance for the calorime-
ter is

(
σsamp

E

)2

=
(f 0

em + f 0
hh/e)σ2

samp0

E
+

[
f 0

emσ2
e0

E
+

f 0
hσ2

h0h/e

E

]
+ (1− h/e)2σ2

nc

15 There are two caveats here: The effects of noncompensation can be minimized by
the methods used by the DREAM collaboration[55], as discussed in Sec. 9 and (in
principle so far) by measuring the neutron flux on an event-by-event basis[17] in
order to reduce the intrinsic resolution contribution of gh(Evis

h |Ee).
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=
(π/e)σ2

samp0

E
+

[
(1− f 0

h)σ2
e0

E
+

f 0
hσ2

h0h/e

E

]
+ (1− h/e)2σ2

nc , (A.21)

where I have followed convention and scaled the energy to electron calibration:
eEe → E. This is almost the usual form for the resolution (σ/E = C1/

√
E ⊕

C2), but with some important differences:

(1) The first term, the sampling contribution, is scaled by the em response.
Since it is the ionization which is sampled, this contribution is perforce
proportional to π/e.

(2) The terms in square brackets are the em and hadronic contributions to
the intrinsic variance. The shape and interpretation of these terms is
discussed in Sec. 7.

(3) The analysis reproduces the familiar “constant term,” with variance con-
tribution explicitly proportional to (1− h/e)2. In Sec. (2) it was found it
to be only “nearly constant,” with a value of about 12.5% 16 at 100 GeV
in lead and slowly decreasing with ln E. It was treated as a constant in
this development.

The third moment about the mean (µ3) of the sampled distribution is the
coefficient of −iu3/3! in φsamp(u):

µ3 = γ1σ
3
ncE

3(1− h/e)3 + 3σ2
nc∆σ2E2(1− h/e) + 3Eσ2

visσ
2
samp0 , (A.22)

where the energy is again scaled to the electron calibration: eE → E. Here
Eσ2

vis is the variance of Fvis(Evis), the coefficient of −u2/2 in Eq. (A.15).

The first term is to be expected in any noncompensating calorimeter; it is just
the skewness of Π(Ee) “playing through” to the end. As discussed in Sec. 2, the
dimensionless coefficient of skewness, γ1, is about 0.06 for the model discussed
there (π− on Pb, using an old version of FLUKA), and σnc = 12.5% at 100 GeV
with some mild energy dependence. γ1σ

3
ncE

3 is the actual third moment about
the mean of Π(Ee).

It is interesting that the visible energy deposition and sampling terms also
contribute to the skewness. In the first case, this is because the variance of
the visible energy at fixed Ee is proportional to Ee, and so at large Ee a wider
distribution is contributed to Fvis(E

vis) than for low Ee—even though for a
given Ee the distribution is (taken to be) Gaussian.

For the same reason, sampling also contributes to the skewness. The first two
contributions both vanish if h/e = 1, but the third term does not. Even in the

16 This value comes from a particular simulation. The experimental number should
be used instead.
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case of a compensating calorimeter, we should not expect an exactly Gaussian
distribution.
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